If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+4=44
We move all terms to the left:
x^2+3x+4-(44)=0
We add all the numbers together, and all the variables
x^2+3x-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| -4(u+5)=4u+28 | | 8y-8=4(y+3) | | 2(3x+9)=-17 | | -2(v-3)=-7v+46 | | 1/9(3x+9)=-17/18 | | 2/7y+3=25/14 | | 6y^2-22y+15=4y-9 | | 4(x+2)+3x=-34 | | 2/7y+7/3=25/14 | | 2x(12x)=x | | 2x(12x)=0 | | 6x+185=15x-13 | | 2x(12x)=1 | | -34=2y+8(y-8) | | 3(v+2)+4v=-1 | | 228-7x=38x+18 | | 6r2+-11r+5=0 | | 30.25x=59.50 | | 1/3n+3=8/15 | | 2(-4k+7)+7k=8k+32 | | x^2+22x+170=0 | | -5(x-18)+3=-43 | | 202-6x=6x-22 | | 24=p•60 | | -5/6(x-18)+3=-71/6 | | 2x-13=57 | | 4x+3/5=0 | | 10/15=p/100 | | 2(x-9)^2-5=31 | | -12+3n=-4-(1-3n) | | 4(6x+2)-5=20+7x | | -7(-7r+6)=2+5r |